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Abstract—The Message Passing Interface (MPI) specifies an
API that allows programmers to create efficient and scalable
parallel applications. The standard defines multiple constraints
for each function parameter. For performance reasons, no
MPI implementation checks all of these constraints at runtime.
Derived datatypes are an important concept of MPI and allow
users to describe an application’s data structures for efficient
and convenient communication. Using existing infrastructure
we present scalable algorithms to detect usage errors of basic
and derived MPI datatypes. We detect errors that include
constraints for construction and usage of derived datatypes,
matching their type signatures in communication, and detecting
erroneous overlaps of communication buffers.

We implement these checks in the MUST runtime error
detection framework. We provide a novel representation of
error locations to highlight usage errors. Further, approaches
to buffer overlap checking can cause unacceptable overheads
for non-contiguous datatypes. We present an algorithm that
uses patterns in derived MPI datatypes to avoid these overheads
without losing precision. Application results for the benchmark
suites SPEC MPI2007 and NAS Parallel Benchmarks for up
to 2048 cores show that our approach applies to a broad
range of applications and that our extended overlap check
improves performance by two orders of magnitude. Finally,
we augment our runtime error detection component with a
debugger extension to support in-depth analysis of the errors
that we find as well as semantic errors. This extension to gdb
provides information about MPI datatype handles and enables
gdb - and other debuggers based on gdb - to display the
content of a buffer as used in MPI communications.

Keywords-MPI; datatypes; runtime error detection; debug-
ging

1. INTRODUCTION

The Message Passing Interface (MPI) [1] is designed to
work with heterogeneous environments and to support one-
copy semantics. Therefore each communication call must
specify datatypes that describe the data in its associated
buffers. MPI’s predefined datatypes (or basic types) re-
present the types that are available in common program-
ming languages, e.g., MPI_INT for an integer in C and
MPI_INTEGERS for an 8 byte integer in Fortran. The stan-
dard also provides derived datatypes that support transfers
of more complex data regions, including non-contiguous
patterns of mixed type data.

Table T
EXAMPLE FOR A TYPE MISMATCH

Task O Task 1

Type = (MPI_INT, 0)
(MPI_INT, 4) (MPI_DOUBLE, 8)
Send (to:1, type:Type, count:1)

Type = (MPI_DOUBLE, O0)
(MPI_INT, 8) (MPI_INT, 12)
Recv (from:0, type:Type, count:1)

MPI type constructors, which create derived datatypes,
can describe all memory usage patterns with any random
access order. Communcations that use derived datatypes
require the MPI library to collect the data for transmission,
which can facilitate the use of advanced hardware features
such as DMA engines that perform scatter/gather opera-
tions. While MPI type constructors provide a powerful and
flexible mechanism for describing data, their use is quite
complex and error-prone. Detecting and locating erroneous
MPI datatype usage can be very challenging. We have even
found such errors in the well-known and widely used SPEC
MPI2007 benchmark suite [2].

Table I sketches a usage error of derived datatypes that
results in a datatype mismatch in point-to-point communica-
tion. Each task uses a distinct derived datatype that we illus-
trate with its type map, which is a set of tuples in which each
tuple contains a basic type and a byte displacement relative
to the communication buffer. For example, (MPI_INT, 4)
refers to a C integer that starts at the fifth byte of the
communication buffer. The MPI standard specifies that the
basic datatypes of point-to-point communications must be
pairwise equal, except that the receive buffer may contain
additional unused basic types. Our example violates this
condition as it tries to match the type MPI_INT to the type
MPI_DOUBLE, which are clearly not equal. However, the
datatype on rank O is 16 bytes in size and fits into the 16
bytes that the receive type spans. As MPI implementations
are optimized for speed; they do not check for erroneous
usage. Thus, implementations do not detect the erroneous
communication, and instead just write the two integer values
into the first double value.

We can detect the usage error in the previous example
with automatic tools. However, semantic errors that adhere
to the rules of the MPI standard but do not implement the



intended behavior are more difficult to detect. Consider the
faulty creation of a derived datatype that should represent
a C-struct. Developers often subtract addresses of individ-
ual fields of the struct during the creation of the derived
datatype. If the operands of the subtraction are switched
by accident, then an example type looks like {(MPI_LB,
0), (MPI_INT, 0), (MPI_DOUBLE, -8), (MPI_CHAR, -
16), (MPI_UB, -24)} instead of {(MPI_LB, 0), (MPI_INT,
0), (MPI_DOUBLE, 8), (MPI_CHAR, 16), (MPI_UB, 24)}.
Although this datatype conforms to the MPI standard, it is
semantically incorrect and will lead to sending or receiving
invalid data when used in communication operations.

Parallel debuggers and runtime error detection tools exist
that detect syntactic and semantic errors of MPI datatype
usage. However, all currently existing runtime tools only
support some correctness checks, have limited scalability,
or may not detect some errors. Further, debuggers provide
no details for MPI datatype handles, which significantly
complicates datatype debugging. We present an approach
to holistic MPI datatype debugging that uses runtime error
detection and classical debuggers jointly to combine wide
coverage with scalability. Our contributions include:

o A classification of MPI usage errors that can be de-

tected at runtime;

o A novel visualization for derived datatype errors;

o Two approaches to MPI type matching to support effi-

cient correctness checks for complex derived datatypes;

o The strided block concept to check for buffer overlap;

o Algorithms that support efficient overlap checking for

heavily non-contiguous datatypes;

« A debugger extension to provide insight into datatype

handles and to print communication buffer contents;

o Experiments that demonstrate the applicability and scal-

ability of our approach.
Our experiments with two widely used benchmark suites
show that our extended overlap check improves performance
by up to two orders of magnitude. Further, they demonstrate
that our tool scales to 2048 MPI processes, well beyond that
of any existing MPI datatype error detection tools.

The remainder of the paper is structured as follows.
Section II provides more background on MPI datatype usage
errors, while Section III covers related work. Section IV
presents different representations of MPI datatypes. We then
detail our overall tool for detecting MPI usage errors in
Section V. Section VI presents our algorithms to detect
datatype mismatches in communication calls. Section VII
covers our basic overlap check, while Section VIII presents
strided blocks and the extended overlap check. Section IX
evaluates our techniques in terms of performance and broad
applicability and Section X presents our extension to gdb.

II. USAGE ERRORS

The MPI standard provides type constructors. The sim-
plest constructor MPI_Type_contiguous concatenates a

Figure 1. Example for a struct type: B = {1, 5, 7, 2, 1};
D = {-4, 0, 47, 76, 100}; T = {MPI_LB, MPI_INT,
MPI_CHAR, MPI_DOUBLE, MPI_UB}; MPI_Type_struct (5,
B, D, T, =*newtype);

given type while MPI_Type_struct is the most general
constructor. Figure 1 illustrates the later constructor with
an example. The individual constructors combine either one
or multiple existing datatypes into a new one by using
repetitions and displacements. MPI returns the newly created
datatype as a handle. The attributes of the datatype are
managed within the MPI library while the application uses
the handle to reference the datatype. Type constructors can
use derived datatypes and the new type remains valid even
if one of its base types is freed.

The MPI standard defines several constraints for the use
of these constructors and of any datatype:

« Argument restrictions for invoking type constructors;

e A derived datatype must be committed before being
used in any communication calls;

« Types matching rules;

o Concurrent operations must not access overlapping
memory locations if at least one has receive semantics;

Automatic correctness checks can easily detect violations to
the first two constraints while violations to the latter two are
far harder to detect.

The standard defines three transfer steps to which type
matching rules apply. The first step transfers data from appli-
cation memory to the MPI library. With few exceptions (i.e.,
MPI_BYTE and MPI_PACKED) the programming language
base types of the locations must correspond to the MPI basic
types. The second step transfers data to the communication
partner. The sequence of basic types associated with the
transferred data must be the same on both sides, although the
receiver can specify a longer sequence than is sent. The third
step transfers data from the MPI library to the application
for which the MPI basic types and programming language
base types must again correspond.

A communication operation that has receive semantics
(e.g., MPI_Recv or MPI_Alltoall) implies a write
to the associated buffer. Concurrent communications that
access overlapping memory regions would imply a race
condition if at least one has receive semantics, so they are
erroneous. Older MPI versions imposed a stricter condition



that allowed implementations to write buffer locations even
for operations with send semantics. Non-blocking communi-
cation calls, which can use the communication buffer after
the initial communication call, and collective calls, which
combine send and receive semantics, complicate detecting
violations of this restriction. Like any race condition, its
violations do often not manifest despite repeated use of the
code until they finally lead to a mysterious crash.

III. RELATED WORK

Several tools for debugging or error detection in MPI
applications exist. Approaches for runtime error detection
include ISP [3], Marmot [4], and Umpire [5]. ISP offers
type matching for point-to-point calls while no publication
details the algorithm in use. This approach performs no type
matching for MPI collectives and does not detect invalid
buffer accesses. Marmot offers buffer overlap detection for
contiguous datatypes that can catch some invalid buffer
accesses but does not check type matching. Umpire imple-
ments type matching for point-to-point messages and for
collectives although its algorithms have not been published
previously. Umpire also uses a checksum approach to detect
invalid access to buffers. The overhead of this approach
increases with buffer size and its precision is limited.

Another approach to type matching [6] generates a hash
for type signatures. The MPI standard allows the specifica-
tion of partial receives that only use parts of a given receive
buffer. The hashing approach must adapt the calculation of
the hash accordingly, which can cause significant increase
of overhead. Also, hashes must be piggybacked with actual
messages, possibly within the MPI library. Further, hash
collisions can lead to false negatives. Finally, this approach
cannot detect invalid buffer accesses.

MPI-CHECK [7] checks transfers between application
memory and the MPI library. These checks require com-
piler analysis, which is limited to Fortran in MPI-CHECK.
Further, the support appears to be limited to MPI basic types.
In any event, this work is orthogonal to ours, which supports
detection of all other MPI datatype errors.

Valgrind [8] provides powerful features for debug-
ging memory-related bugs. Its MPI extension detects in-
valid accesses to application memory that is actively
used in communication functions. This extension requires
the MPI-2 functions MPI_Type_get_envelope and
MPI_Type_get_contents but only supports MPI-1 de-
rived datatypes. It handles derived datatypes with a recursive
function. This function uses MPI_Type_get_envelope
and MPI_Type_get_contents more often than required
to determine the derived type structure. The functions are
invoked for each repetition of an underlying type. Further,
the Valgrind extension uses the recursive function for each
communication call, which can cause considerable overhead
for complex datatypes. However, the resulting correctness

check is extremely precise although it does not check type
matching and is unavailable for some architecture.

In summary, individual approaches to the detection of
type mismatches and invalid buffer accesses exist. However,
none of these approaches offers a convenient visualization
of errors that involve complex datatypes. To the best of
our knowledge, no single existing runtime tool both detects
invalid accesses and type mismatches in a scalable way.

We need debugger support to investigate details of er-
rors that automatic tools detect and to inspect semantic
errors. All existing parallel debuggers (e.g., DDT [9] and
Totalview [10]) treat MPI handles as opaque handles. The
debuggers only display the numeric values of the handles
and do not provide any mechanism to examine the actual
MPI object. No existing debugger supports MPI datatypes,
not even the basic types, which have constant handle values.

The MPI forum is designing a tools information interface
for MPI-3 to provide tools access to information on MPI
handles. Enhanced features of debuggers could use this
interface to highlight the values that will be communicated
when using a given datatype and buffer. However, the new
interface is not yet available in any MPI implementation.

IV. MPI DATATYPE DISPLAY AND ELEMENT ADDRESSING

We can map datatypes built with MPI type constructors
to trees [11]. These trees give a full or partial representation
of the corresponding datatypes. We introduce several useful
mappings that store the information used to construct the
type. As we show in the final part of this section, we can
use them to address an element of a datatype or buffer.

A. Definition: meta type-tree

The simplest mapping, a meta type-tree, projects the
datatype to a tree in which nodes are datatype handles and
the edges represent handle uses in the type’s constructor.
All leaves in this mapping represent basic types. This tree
indicates the dependencies of the defined datatypes. The
nodes can store the values for blocklength, displacements,
and kind of type with the handles. Figure 2(a) shows the
meta type-tree for the datatype that Figure 1 shows.

B. Definition: expanded type-tree

Another mapping, the expanded type-tree, projects the
datatype to a tree that has more levels and many more nodes,
than the meta type-tree. Each branching factor in the type
constructor results in an equivalent number of edges starting
from the node or the child node. For example, a vector type
with the parameters count, blocklength and oldtype has count
child nodes as an intermediate stage. Each intermediate stage
has blocklength child nodes of type oldtype. The leaves
of this tree represent basic types. For the example from
Figure 1, we derive the expanded type-tree from its meta
type-tree by inserting intermediate nodes where the counts
are displayed and connect these to count copies of the
attached leaves, as Figure 2(b) shows.
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Examples of a meta (a) and expanded (b) type-tree

C. Addressing elements of datatypes

In various contexts, such as to point to the location of a
violation, we must specify a single element of a derived
datatype. Our method based on the expanded type-tree
compactly addresses a precise element. Starting at a given
datatype handle (i.e., a root node), we can determine the
route through the tree by counting the edges to the left of
node’s incoming edge. For each step this count is given in
square brackets and appended to the address. For the struct
type s_type given in Figure 1, s_type(STRUCT)[3] points to
the block of doubles while s_type(STRUCT)|2|[5](CHAR)
points to the sixth character, as Figure 2(b) shows. The
datatype variable provides a reference point; the specifica-
tion of the nodes in round brackets is only for clarification,
so s_type(STRUCT)[2][5](CHAR) and s_type[2][5] are valid
addresses of the same element, assuming that s_type is a
valid handle of a datatype with proper sizes and structure.

In the long form, the intermediate stages manifest as
succeeding brackets without kind specification in between.
All MPI-1 datatypes other than contiguous have one in-
termediate stage. The contiguous type does not require an
intermediate stage. MPI-2 datatypes need special consider-
ation. The indexed-block type is handled as the indexed
type. The resized type does not even require a node as it
always has exactly one outgoing edge. For completeness, we
print the resized type with one child [0]. For the darray and
subarray datatypes, the dimension parameter ndims specifies
the number of stages to the child type, so the number of
intermediate nodes varies for these types.

V. CORRECTNESS CHECKING WITH MUST

We present an overview of the automatic correctness
checks that we provide with the runtime error detection tool

MUST, the Marmot Umpire Scalable Tool, in this section.
MUST builds on the Generic Tool Infrastructure [12], which
supports efficient tool development and application-specific
tool instantiation. We target all four types of datatype usage
errors that we discussed in Section II.

When we detect an error we provide the description
of the problem, information on the MPI calls involved,
and the datatype positions from Section IV (if applicable).
Further, MUST provides as much background information
as possible, e.g., if it detects an erroneous datatype usage,
it lists information on the calls that created the datatype.

We first summarize our checks for argument restric-
tions and datatype state restrictions. We then introduce our
message matching design. We describe our type matching
algorithms in the next section, while Section VII describes
our novel approach to detect buffer access violations.

A. Argument Restrictions

Marmot [4] provides various checks for argument restric-
tions and datatype commit state, which we adopt in MUST.
These checksfall into the following classes:

1) Type constructor values: For arguments of type con-
structor invocations, we check the following conditions:

e Values of count or blocklength must be non-negative;

e Values of ndims in MPI_Type_create_subarray
must be positive;

« Type constructor array parameters must be non-NULL.

2) Commit datatype handle values: A datatype handle
that is used in an MPI_Type_commit invocation must
not be MPI_DATATYPE_NULL or any handle that is not
the result of a previous constructor call. The handle can
have been committed previously or it can signify a basic
type; we provide warnings for these unnecessary operations.
Datatype handles used in MPI_Type_ free must conform
to the same restrictions although freeing a handle twice is
an error and not just a warning.

3) Valid datatypes for communication: A datatype handle
used in a communication operation must be committed and
must not have been freed.

4) Datatype leaks: Derived datatypes should be freed
before MPI_Finalize is invoked. MPI implementations
use memory to track datatypes and other MPI objects so
resource leaks are hidden memory leaks that can cause
unexpected behavior.

B. Advanced Checks

While we could verify the above conditions on the ap-
plication processes, some checks require additional commu-
nication. For example, type matching of the transfer to a
communication partner must compare the send type with the
receive type but each process only has information about one
of the types. As previously discussed, Gropp [6] calculated
a hash value from datatypes, which he prepended to each



send call. He then checked in the receive operation that the
hash value of the receive type matched.

ISP [3] and Umpire [5] use a different approach. These
tools also perform runtime deadlock detection, which re-
quires emulation of MPI message matching in order to
determine which communication calls are active and which
calls can complete. Piggybacking additional data with mes-
sages is infeasible since it would hang in the case of an
application deadlock. Thus, both tools emulate message
matching in a centralized manager. The manager detects any
type mismatches when it detects a match.

We use the emulation approach since MUST includes
deadlock detection. Thus, we run checks such as message
matching within an MPI message matching emulator. A cen-
tralized message matching implementation can scale to about
one thousand processes. To increase scalability, our other
work is developing the first distributed implementation [12].

In the following sections we use the terms fype map and
type signature with the following meanings:

1) Definition: type map: The MPI standard defines a
typemap as a sequence of pairs of an MPI basic type and
a displacement. The displacements are in bytes and are
either relative to the buffer address or are absolute, if the
user specifies MPI_BOTTOM as a buffer. We can represent
all derived datatypes as a typemap. All communication
calls include a count argument that specifies how often to
repeat the typemap. When we refer to the type map of a
communication call, we mean the type map that results from
repeating the type map of the given type count times.

2) Definition: type signature: A type signature is a se-
quence of MPI basic types that represents a datatype. It
corresponds to a typemap but omits the displacements. When
we refer to the type signature of the communication call, we
mean type signature that results from repeating the signature
of the given type count times.

VI. TYPE MATCHING

The MPI standard requires that the sender and receiver
of communications use basic types with identical names
(or MPI_PACKED) for each transmitted value. Correctness
checks for this constraint must compare the information
about the send type and the receive type to ensure that
the type signatures of both communication calls are equal.
For point-to-point calls, the type signature of the sending
communication can be a proper prefix of the type signature
of the receiving communication, in which case it is a partial
receive, i.e., not all basic types of the type signature are used
on the receiver side. Partial receives are illegal for collective
communications. In the following, we first present MUST’s
default type matching algorithm. We then provide a second
algorithm for more extensive use of derived datatypes.

A. Typesig Algorithm

Our basic algorithm uses a fypesig, which has one entry
for multiple entries of the same basic type.

1) Definition: typesig: A typesig, a compressed type
signature, is a sequence of pairs that contain an MPI basic
type and a repetition count. The count specifies how often
the basic type is repeated in the type signature. We compare
minimal size typesigs, which summarize all succeeding and
equal basic types into one entry, i.e., no two succeeding
entries have the same basic type. We compute the minimal
sized typesig when we intercept an MPI type constructor.

2) Typesig-based type matching: Since each minimal
typesig is compressed, we can compare two typesigs by
comparing their entries pairwise for equality. As commu-
nication calls specify a count value to repeat a datatype,
we must include its effect in the comparison. We could
calculate new typesigs from the given types and counts and
compare them directly. However, this approach may require
additional storage and imposes unnecessary overhead. Thus,
we loop count times over the typesig of the datatype. With
this approach, the check is successful if we reach the end
of both typesigs simultaneously since further comparison
would yield no new insights. This typesig approach can
check many derived datatypes in O(1). Most applications
use derived datatypes that use only one basic type in their
constructors, in which case the typesig only has one entry.
This condition holds for all benchmarks in Section IX.

B. Regular Typesig Algorithm

If an application uses mixed basic types, e.g., to cover an
array of C structs, then the typesig approach may become
time consuming. We develop the concept of a regular expres-
sion representation of type signatures within Umpire [5].
We refer to these advanced type signatures as regular
typesigs. Compared to the typesig approach, regular typesigs
significantly reduce runtime overhead during type matching
but can incur more overhead to prepare the representation
when the datatype is committed.

Representation: The regular typesig is organized in a
tree structure. The leaf nodes carry basic datatypes with a
count for their repetition. The inner nodes can have any
number of children and also carry an attribute for repetition.

Preparation: We use an unambiguous representation
to simplify the comparison of regular typesigs. Algorithm 1
ensures that equal type signatures are represented by equal
regular typesigs. For example, assume that d and ¢ are basic
types, a type signature with the pattern dcdedccc could be
represented by (dc)3c? or (dc)?dc®. Algorithm 1 generates
the latter representation as it starts with the compressed
pattern dcdcdc® and summarizes the first two pairs as a
second step. For large alternating datatypes this algorithm
may require a complete serialization in order to derive a
regular typesig. An improvement would use this algorithm
for the outermost struct. The other types just contribute a
factor to the multiplicity of the root node.

Comparison: When we compare two regular typesigs,
we strip the outermost multiplicity. The comparison of these



Algorithm 1 Preparation of a regular typesig.

sigList < compressedTypesig(type)
windowSize < 2
while windowSize < size(sigList)/2 do
walk with two windowSized slides over sigList and
summarize identical adjacent slides
if summarized slides then
windowSize < 2
else
windowSize <— windowSize + 1
end if
end while

Procedure 2 compare() - Compare regular typesigs.

in-parameter: subtreel, subtree2
out-parameter: remainl, remain2
if subtreel and subtree2 are leaves then
if subtreel.type # subtree2.type then
return mismatch
end if
else if subtreel or subtree?2 is leaf then
special handling needed
else
for all childl, child2 from subtreel, subtree2 do
compare (childl, child2, remainl, remain2)
if remainl or remain2 then
special handling needed
break
end if
end for
end if
if subtreel.count not subtree2.count then
recalculate remainl / remain2
end if

stripped typesigs provides the following results:

o Full match of the types;
o Mismatch;
¢ One fits the other (partially) with a given multiply.

An algebra determines the result of the actual type match
query based on these return values. For the comparison
of the stripped typesigs we can exploit the tree structure.
Two typesigs are equal if all subtrees are equal, which we
determine with Algorithm 2, that recursively walks the tree
and compares the child nodes and their multiplicities. Full
matches, which can be considered the general case, imply a
minimal workload. Mismatches are also quickly determined.
Partial matches require special handling. The remaining
values carry the number of basic elements remaining for
this subtree. If a remaining value arises and none of the
current subtrees is finished, we also have a mismatch.

VII. CHECKS FOR OVERLAPS

When an application issues a communication call, it
passes one or more communication buffers associated with
datatype(s) and repetition count(s) to MPIL. If the call has
receive semantics, the memory regions that are defined by
these arguments must not be accessed until the communica-
tion completes. The following complexities make detecting
violations of this restriction non-trivial:

« Non-blocking communications use memory buffer even
after the initiating communication call returns;

« Datatypes may be self-overlapped;

o Collective calls can specify multiple buffers and have
both send and receive semantics;

Our approach tracks memory regions that are used in all
currently active communication calls. If a communication
call passes a new memory region to MPI, we check whether
it overlaps with a region that is already in use. If so we
issue an error if at least one of the communications receives
data. Thus, we detect all invalid accesses that result from
specifying overlapping communication buffers.

We must track all memory regions that any active com-
munication uses in order to detect invalid overlaps. Since
derived datatypes can span non-contiguous memory regions,
we may need to track a large number of memory intervals.
However, we can detect these overlaps directly on the
application processes as they involve only process-local
information. We present a blocklist-based algorithm in this
section and a further optimized algorithm in the next section.
We start with additional terms and definitions, then present
the detection of self-overlaps, and finally the detection of
any overlap between any two active communications.

A. Definitions

1) Definition: buffer: As stated above, an MPI communi-
cation specifies the start address of the buffer, a datatype, and
its repetition count. The start address is a position in memory
relative to which the datatype defines a memory pattern. The
count specifies the multiplicity of the transmitted datatype.
The buffer is the composition of the initial buffer address,
the datatype, and the count, i.e., the set of memory regions
that this triple defines.

2) Definition: active buffer: A buffer is active if an
active MPI communication is using it. The standard de-
fines various communication types, including non-blocking
point-to-point calls. A regular point-to-point call is active
while the corresponding function call is active. A non-
blocking communication is active until a completion call
(e.g., MPI_Wait) marks the communication as completed.
Collective communications require special handling since
they collect multiple communications into one function.

3) Definition: overlap: Two buffers overlap if they con-
tain at least one identical memory location. Also, datatypes
may specify memory patterns that overlap, which we refer to



Algorithm 3 Create blocklist

childblocklist < blocklist(childtype)
isSelfOverlapping < isSelfOverlapping(childtype)
myblocklist < @
for all childnode of datatype do
for all interval € childblocklist do
insert (interval + offset of childnode) in myblocklist
end for
end for
for all interval € myblocklist do
if interval.end > interval.next.start then
if interval.end > interval.next.start then
isSelfOverlapping < true
end if
concat(interval interval.next)
end if
end for

as self-overlapping datatypes. Finally, if a buffer uses a self-
overlapping datatype or a datatype that is self-overlapping
at some repetition counts then the buffer is self-overlapping.

4) MPI standard: allowed and forbidden overlaps: The
MPI standard permits overlaps in send buffers. Therefore
self-overlapping datatypes may be built and committed.
However, the use of self-overlapping buffers in receiving
communications is erroneous, irrespective of whether the
overlapping memory location is used by the receive.

5) Definition: blocklist: We can represent the memory
regions of each buffer with a list of block intervals, called
a blocklist. A blocklist is a set of pairs in which each pair
defines a memory interval. The first value of each pair is
the memory location that starts the interval and the second
value is the first memory location that does not belong to the
interval. For native datatypes, the blocklist consists of one
interval that starts at 0 and ends at 0 + length(BasicType).
We can calculate blocklists for derived datatypes from the
blocklists of their child type(s), the extent of the child
type(s), and other values that specify the derived type,
e.g., blocklengths and offsets. We assume that blocklists
are sorted at all times, which allows more efficient overlap
detection. We sort them by their first value. A blocklist is
compact if it does not include any overlapping intervals. As
an example we give the blocklist for the type displayed in
Figure 1: {(0, 19), (47, 53), (76, 91)}

B. Blocklist Generation for Derived Datatypes

To improve the performance of overlap detection, we
assume all blocklists are compact and sorted. If the blocklist
is self-overlapping, i.e., the blocklist of a derived datatype
that is only correctly used in send calls, we attach an
extra is-overlapping flag to it. Thus, we can use a compact
representation even for self-overlapping blocklists.

Algorithm 3 produces our compact blocklist. When we
calculate compact blocklists for derived datatypes, we start
with an empty blocklist and repeatedly add blocklists from
the given base types to it. Each addition depends on the
given type constructor. Most type constructors imply a time
complexity of O(n) where n = count - blocklength. The
insertion of a single element is done in amortized constant
time as we are merging sorted lists. The first part of
Algorithm 3 shows the blocklist calculation for a derived
datatype. The first for loop is dependent on the actual type
constructor. For example, it loops over the given count
and adds the blocklist of the base type in each iteration
with an offset that is based on the extent of the base
type for MPI_Type_contiguous. The algorithm then
compresses the blocklist by combining subsequent intervals,
which has time complexity O(n), as the blocklist is sorted.
The algorithm also stores whether the new blocklist contains
overlaps; if so it sets the overlapping flag to true.

C. Overlap Detection

The second part of Algorithm 3 illustrates how to detect
overlaps between blocklists. In the general case with block-
lists of length n and m this check has a time complexity of
O(n+m). The property of compactness ensures the shortest
possible serial representation of a blocklist, which means
that the sizes of n and m are minimal.

1) Self-overlapping datatype check: Buffers of receiving
communications must not use self-overlapping datatypes.
We check this condition in constant time since the blocklist
for the datatype already stores whether it is self-overlapping.

2) Self-overlapping buffer check: In order to check for
a self-overlapping communication buffer, we must consider
the repetition count. The datatype is repeated with an offset
that is equal to the extent of the datatype. A precondition
for an overlap is that the true extent of the datatype is larger
than the extent; otherwise the repetitions are placed side by
side. Further, the quotient |™“=2%¢ | js the upper bound
of repetitions in which overlaps can occur. The subsequent
repetition is placed immediately next to the first. To test for
an overlap for a given repetition, we repeat the blocklist
for the datatype | ™“=2"" | times with a stride that is equal
to the extent of the datatype. We then check the resulting
intermediate blocklist for overlaps as in Algorithm 3.

We cache the result of this calculation in the context
of the datatype. The results for a count times repetition
can be used for other counts as well as the current one.
If a count does not produce overlap, all smaller counts do
not produce overlap. If a count produces overlap, all larger
counts do also. Thus, we only cache two values for buffer
self-overlap checks for each datatype: the largest count that
has not produced overlap and the smallest count that has.
For all checks that use any count that is between these two
values, we perform the self-overlapping check and update
the cached values, which we initialize to 0 and oo.




3) Overlapping buffer check: The final overlap checks
must cover all active buffers. While the previous overlap
checks do not need to consider actual memory addresses,
this check must consider the buffer address as well as the
blocklist that results from the datatype and count. Thus,
we use a memory-map that we derive from a compact
blocklist by adding the buffer address to each entry. We
also must store whether an entry in the memory-map is used
with send or receive semantics, for which we use an extra
flag. We must handle three groups of communications: 1)
blocking communications, which must not overlap pending
requests; 2) non-blocking communications, which must not
overlap pending requests and must be added to pending
requests; and 3) collective communications, which must
not overlap pending requests and must not overlap with
themselves. When MPI-3.0 adds non-blocking collective
communications, we will need to add them to the set of
pending requests in addition to the two overlapping checks.
While checking these constraints, we must not report overlap
of two send buffers as an error.

We merge the memory-maps of all pending requests into
one set, that is sorted but not compact, which simplifies
removing the entries that belong to a completed request. We
can check any buffer for overlaps with pending requests by
walking over the set of pending requests and the memory-
map according to the buffer in question. This test has
complexity O(n + m) where n and m are the sizes of the
memory-map and the set of pending requests.

The handling of collective communications is specific to
each call, so that we check the part of the buffer(s) that
receiving processes use. We merge the memory-maps of the
active buffers and check for overlaps as described above.
Algorithm 5 contains an optimization — the inner while loop
— to fast-forward over harmless blocks of pending requests.
If the buffer is a send buffer, this while loop also fast-
forwards over pending blocks marked for send.

Since we re-sort the blocks in the blocklist when we
find an overlap, we cannot refer to an address within the
datatype structure. We solve this problem by adding a further
attribute to each blocklist entry that gives the byte position
of the block when the buffer is serialized for transmission.
This bijective projection of the datatype to integers is an
appropriate representation within the internal data structures.
Alternatively, we can easily translate this position to the
address output format by recursing over the tree levels and
using the child node’s size value to locate the matching edge.
In summary for each found overlap or typesig mismatch, we
report the source code location and the exact address of the
violating element within the datatype structure.

VIII. STRIDED BLOCKS

When we tested our overlap checks we saw enormous
overheads for 121.pop2 and 132.zeusmp2 (We introduce
these benchmarks in detail in Section IX). For 132.zeusmp?2,

Algorithm 4 Check for overlap with pending requests

requestMemmap <— sortedListOfPendingBuffers
memmap < memorymap (buffer)
for all block € memmap do
while leftmostBlock € requestMemmap begins left of
block’s end do
while leftmostBlock € requestMemmap ends left of
block’s begin do
remove leftmostBlock from requestMemmap
end while
if leftmostBlock ends right of block’s begin and
leftmostBlock begins left of block’s end then
found an overlap
end if
remove leftmostBlock from requestMemmap
end while
end for

Algorithm 5 Check send buffer for overlap with pending
requests

for all block € memmap do
while leftmostBlock € requestMemmap begins left of
block’s end do
while leftmostBlock € requestMemmap is marked for
send or ends left of block’s begin do
remove leftmostBlock from requestMemmap
end while

end while
end for

we observed an overhead of 345% for the Ilref input set
at 256 nodes. We identified comb-like datatypes as the
source of this overhead. These datatypes describe planes of
a multi-dimensional array. For a 3-dimensional array with
edge length k, each plane contains k X k basic type entries.
Depending on the memory layout of the plane, it can require
as many as k2 blocks in our blocklist representation. Thus,
our overlap checks have time complexity O(k? In(k)). We
introduce the concept of strided blocks to reduce this cost.

A. Definition: strided-block

A strided-block replaces one or multiple blocklist entries.
Where each blocklist entry defines a single interval, a
strided-block defines a set of intervals that have a constant
offset, i.e., a comb-like memory region. A strided-block
is characterized by its interval and the length, count and
stride of its blocks. The strided-blocklist is an ordered set
of strided-blocks. In most cases we can decide with constant
effort if a block or a strided-block overlaps with a strided-
block by arithmetic evaluation.



Procedure 6 Check block for overlap with strided-block
in-parameter: b - block, s - strided-block
if s.end < b.begin and s.begin > b.end then
/I block out of the region
return false
else if s.count = 1 then
/I strided is compact
return true
else if b.begin < s.begin then
/I block begins left of stride
return true
end if
/I begin of block lays in i-th stride-interval
i + (b.begin — s.begin) /s.stride)
if b.begin < s.begin + i x s.stride + s.blocksize then
/I begin of block lays within the i-th stride-interval
return true
else if b.end > s.begin + (i + 1) * s.stride then
/I end of block lays in the (i+1)th stride-interval
return true
end if
return false

B. Handling strided-blocks

Procedure 6 sketches the basic test for an overlap between
a block and a strided block. We check two strided-blocks for
overlap in constant time by considering these cases:

o The covered intervals do not overlap;
o The gap in strides is smaller than the blocklength:

— The strided blocks collide on first intersection.
o The strides are similar in their factors:
— The strided-blocks may lay side-by-side infinitely.

We handle these cases, which cover most use-cases, with
constant effort. We only arrive at the remaining case if the
two combs cover the same region in memory and have
unusual stride values. This situation results in the worst
case: we must test each block represented by the strided-
block against the other strided-block, which has complexity
O(min(n,m)) where n and m are the count of blocks in the
overlapping area of the two strided blocks.

C. Use of strided-blocks

Upon a closer look the concept of strided-blocks can
exploit the potential of regularities in datatypes. Basically,
the strided-blocks use the property of repetition in the
construction of datatypes. For each kind of derived datatype
this repetition manifests in terms of count, blocklength,
subsizes or distribution. The only disadvantage of using
a strided-block where we could use a single interval is
the minimal memory overhead. Therefore we replace the
concept of blocks generally by the concept of strided-blocks.
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Figure 3. Overhead of MPI datatype checks to SPEC MPI2007

D. Further improvements

For some advanced MPI programs in production the use
of strided blocks is not enough for satisfying runtime results.
An example is a framework for dynamic load balancing
that repeatedly exchanges irregular border areas to neighbor
processes[13]. Despite using strided-blocks, the generated
lists grow large. We could organize the strided-blocks in a
binary search tree in which each node provides a bounding
box for the intervals in this subtree to reduce the effort of
checking for overlaps.

IX. RESULTS OF OUR AUTOMATIC CHECKS

We first present some errors that we detected in two SPEC
MPI2007 [2] benchmarks. We then detail overhead measure-
ments for our checks for overlaps for two benchmark suites:
SPEC MPI2007 and the NAS Parallel Benchmarks [14].

A. Datatype errors in SPEC MPI2007

While measuring our tool’s overhead, we detected bugs
within the 115.fds4 and 122.tachyon. Both benchmarks use
overlapping buffers in MPI_Allgather calls. For the case
in which the send and receive buffers are equal, MPI-2 in-
troduced the MPI_IN_PLACE argument. Both benchmarks
intend this behavior but explicitly give the buffer address for
both arguments, which is erroneous. 115.fds4 uses the same
erroneous behavior for MPI_Gather calls.

B. Overhead

We measure our tool’s overhead when applied to two
standard benchmark suites: SPEC MPI2007 [2] and the
NAS Parallel Benchmarks [14]. These benchmark suites
come with various problem sizes. We used an 864 node
Opteron Linux cluster with a DDR InfiniBand network for
all experiments. Each node has 16 cores on four sockets and
32 GB of main memory that is shared between all cores. We
used MVAPICH-1 for the measurements, although our tool
is portable across MPI implementations. Since we aim to
support large scale applications, we use the largest problem
sizes available and with process counts of 256, 512, 1024
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and 2048 nodes, which is Iref for SPEC MPI2007 and class
E for the NAS Parallel Benchmark suite. As the kernels bt
and sp require square numbers as process counts, we use 529
and 2025 instead of 512 and 2048. Figures 3 and 4 show
our measurement results. For each run, we give the relative
runtime of the instrumented benchmark to an uninstrumented
reference run. For many benchmarks the overhead is below
20%. For the kernel 128.GAPgeofem we trace the overhead
to the massive use of collective operations — more than 1000
per second — and our tool performs the checks for each.

X. MPI DATATYPES WITHIN GDB

The real work starts after we identify an error, which can
occur far from where we detect it. When MUST detects an
error, it reports the location at which the problem manifests.
At this point, a general-purpose debugger is often useful.
However, most debuggers poorly support the display of
structures that require context knowledge to understand their
meaning. For example, debuggers regularly fail to display
data structures like C++ STL containers intuitively. The con-
text of debugging MPI applications holds similar challenges
as most MPI objects are opaque: the user code only has
handles, which are typically integer values or pointers, to
represent them. The debugger has no context information
about a handle so it displays this unintuitive value. The GNU
debugger gdb [15] helps to solve this problem by providing
an interface to manage the output when printing a variable
that can allow access to the context of the variable.

A. Gdb pretty printer

The Python interface of gdb provides a mechanism, to
register a pretty printer module. All registered modules are
invoked for each variable that gdb prints. If no module
prints the variable, the default printer module is used.
This mechanism allows context knowledge to determine the
display of the variable.

B. Context knowledge

Context knowledge is easily applied to the output for
STL containers, as it is in most cases sufficient to filter
the output. For the case of MPI handles, such as those

for MPI datatypes, the context of the variable is dynami-
cally defined. The context knowledge is bound to the MPI
handles by the calls to the datatype constructor functions.
MPI-2 defines a mechanism to obtain the context of an
MPI datatype by calls to MPI_Type_get_envelope
and MPI_Type_get_contents, which provide access
to the parameters of the type constructors. If the datatype
is based on other derived datatypes, the returned handle
represents a new datatype structure, which must finally be
freed. These functions must recursively handle each node
of the datatype tree. This approach means repeated memory
allocation in application memory space and calls to functions
in the application environment. These actions change the
application’s memory. In general, the debugger should be
able to unroll the changes, but we observed that on repeated
rollbacks the debugger failed. We need a solution that:

o Ports to all (most) MPI implementations;

o Applies to MPI-1-only implementations like MPICH;

« Has low runtime and memory overhead; and

« Allows the debugger to read data without function calls
or writing to application memory.

We exploit the MPI profiling interface to achieve these
goals. This interface allows interposition of a wrapper library
between the application and the MPI library. We save the
parameters of each call to an MPI type constructor or
destructor into a data structure. This approach achieves
our first two goals. The focus of the wrapper functions is
therefore on the last two goals. To achieve low memory
overhead, we define a structure for each kind of datatype that
can record the parameters of the constructor call for this kind
of datatype. The parameters are the smallest representation
of the datatype without losing knowledge about the datatype
— except for compressing the data. The resulting structure
corresponds to the meta type-tree. Instances of the same
datatype in the tree are covered by one structure in memory.
To provide both the wrapper and the debugger pretty printer
module fast access to the structure that corresponds to a
datatype handle, we register the structures to a hashmap with
the datatype handle as key. As the debugger has access to all
variables located in the context of the application, the plugin
can read the context knowledge for a datatype handle from
application memory without changing it.

C. Display information about type handles

Instead of printing the handle value, the debugger can
provide useful information about a datatype’s shape. We
display the parameters of the constructor of the datatype
in the form of a C-struct. Thus, any GUI that uses gdb as a
backend can profit from the extension without further effort.
Figure 5 gives an example for the output of gdb for the
datatype introduced in Figure 1 applying our gdb extension.
We named the extension mpipp (MPI pretty printer).



1 (gdb) print/r struDT
2 $1 = 115
3 (g b) print struDT
4 52 = {
5 kind = STRUCT,
6 count = 5,
7 entries = {{
8 blocklength = 1,
9 offset = -4,
10 type = "MPI_LB"
11 oo A
12 blocklength = 5,
13 offset = 0,
14 type = "MPI_INT"
15 b A
16 blocklength = 7,
17 offset = 47,
18 type = "MPI_CHAR"
19 b o
20 blocklength = 2,
21 offset = 76,
22 type = "MPI_DOUBLE"
23 b A
24 blocklength = 1,
25 offset = 100,
26 type = "MPI_UB"
27 }}
28 }
Figure 5. Display type from Figure 1 in gdb
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Figure 6. Display datatype and buffer in DDD

D. Display informations about buffers

With the help of context knowledge we can provide a
view of the buffer given in MPI communication functions.
The Python API of gdb allows one to define additonal
commands for the gdb command line. The first approach
to display the content of a buffer is a command similar
to typecasting in some languages. A call to mpipp <type
handle> <buffer address> prints the memory content that
is described by the datatype that the type handle references.
The definition of a new command means that a frontend
could implement support for this command to profit from
this feature. As we do not want to pass the effort completely
to the frontend, we again introduce MPI context knowledge.

When a pointer or array is printed and the address is a buffer
argument in an MPI communication call near the current
position within the application then the buffer is formatted
by the corresponding datatype given in this communication
call. Figure 6 illustrates the kind of information that can be
provided by the extension. It displays the variables known in
the local application context (info locals). The figure shows
an unmodified DDD screenshot with our extension loaded
to the gdb backend. The pointer buffer is displayed with its
content as seen by the current MPI_Bcast call.

E. Alternative methods to display the structure of datatypes

As the extension is written in Python, we could provide
the information about the datatype in a GUI window that is
launched by a newly defined gdb command. The advantage
of a GUI window is the possibility of a more natural
browsing experience within the data. Our prototype displays
the data as a directory tree where the sets from Figure 5
are represented as collapsible nodes and the set elements
as children of this node. Also the data of a communication
buffer is displayed with the help of the directory tree. The
collapsible nodes simplify keeping an overview for large
buffer sizes. The large amount of displayable data is a
problem for the prototype as we evaluate all information in
advance for later display. In a more suitable implementation
the information would be evaluated just-in-time, i.e., when
the node is expanded.

XI. FUTURE WORK

A. Connecting must and debugger

We plan to connect the MUST approach to the debugger
approach. Instead of generating an error message when
an error occurs, we will start an instance of gdb that is
connected to the faulty process. The improved gdb enables
the developer to investigate the source of the error.

B. Limitations of the extension

Real life applications sometimes use complex type struc-
tures. In this case the output quickly becomes too large to
review. The possibility to browse down the type tree could
become useful. A possible application is the addressing
within the datatype as described above. As MUST describes
the location of an error, it would be helpful for the gdb
extension to understand this addressing as input.

C. Handling other handles

Our gdb extension does not cover other MPI handles.
Information about the handles of request, groups, and com-
municators could be useful for debugging MPI applications.



XII. CONCLUSION

We presented two components that provide a holistic
approach for debugging MPI datatype usage in large scale
applications. The first component, integrated into the MPI
runtime error detection tool MUST, can detect several com-
mon errors when dealing with MPI datatypes. The detected
errors include general checks for function arguments, checks
for type matching, and checks to detect overlapping com-
munication buffers. We presented scalable algorithms to
perform these checks even for complex derived datatypes.
Our algorithms use a novel regular expression representation
for type signatures and strided blocks for the detection
of buffer overlaps. A path representation for correctness
errors allows users to pinpoint the results of these automatic
correctness checks easily. We demonstrated the scalability of
our overlap checks for up to 2048 processes with two widely
used benchmark suites, SPEC MPI2007 and the NAS Par-
allel Benchmarks. During our experiments we detected MPI
usage errors in the benchmarks 7175.fds4 and 122.tachyon.

Our second component for holistic MPI datatype de-
bugging extends the GNU debugger gdb. This extension
provides insight into MPI datatypes when debugging an
MPI application. While current debuggers only display the
numeric values of MPI datatype handles, our extension can
display the datatype’s structure. Further, we allow users to
print the values that actual communication calls transfer.
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